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Problem. Let (fn) be a sequence of unit vectors in a Hilbert space. Prove that there is a weak-convergent
subsequence.

Proof. Let (en) be a basis for the Hilbert space H. Note that |(fn, e1)| ≤ ‖fn‖‖e1‖ = 1, so we have a sequence
of complex numbers (fn, e1) ∈ D. The closed unit disk is sequentially compact, so there is a subsequence (f1

n)
of (fn) so that (f1

n, e1) converges to some complex number a1. Inductively, if we have chosen a subsequence
(fk

n) of (fn) so that the sequence (fk
n , ej) converges (to some aj) for each j = 1, . . . , k, then we can choose a

subsequence (fk+1
n ) of (fk

n) so that (fk+1
n , ej) converges for each j = 1, . . . , k+1. This subsequence is chosen

in the same way as (f1
n).

Consider the ‘diagonal’ subsequence (fn
n ). By construction we have (fn

n , ek)→ ak for each k ∈ N. Define
f =

∑
j ajej , so that (fn

n , ek) → (f, ek) for each k ∈ N. It remains to show that this series converges and
that (fn

n − f, g)→ 0 for each g ∈ H.
Fix a positive integer N and take n large enough that |(fn

n , ek) − ak| < 1/N for each k = 1, 2, . . . , N .
Then we have

N∑
k=1

|ak|2 ≤
N∑

k=1

|(fn
n , ek)− ak|2 +

N∑
k=1

|(fn
n , ek)|2 ≤ 1 +

∞∑
k=1

|(fn
n , ek)|2 = 2.

Since N was arbitrary and the series
∑
|ak|2 consists of positive terms, taking N → ∞ gives ‖f‖ =∑∞

1 |ak|2 <∞. Hence f ∈ H.
Let g ∈ H and write g =

∑
j bjej , where

∑
j |bj |2 <∞. Fix N > 0 and write

|(fn
n − f, g)| ≤

∣∣∣∣∣∣
fn

n − f,
N∑

j=1

bjej

∣∣∣∣∣∣+

∣∣∣∣∣∣
fn

n − f,
∞∑

j=N+1

bjej

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
fn

n − f,
N∑

j=1

bjej

∣∣∣∣∣∣+ ‖fn
n − f‖

 ∞∑
j=N+1

|bj |2
1/2

≤

∣∣∣∣∣∣
fn

n − f,
N∑

j=1

bjej

∣∣∣∣∣∣+ (1 + ‖f‖)

 ∞∑
j=N+1

|bj |2
1/2

.

Taking n→∞ gives

lim sup
n→∞

|(fn
n − f, g)| ≤ (1 + ‖f‖)

 ∞∑
j=N+1

|bj |2
1/2

.

Since (bj) is square summable and N was arbitrary, taking N →∞ gives lim(fn
n − f, g) = 0.

Problem. Let H = L2[0, 1] and define T : H → H by (Tf)(t) = tf(t). Show that T is bounded, symmetric,
not compact, and has no eigenvectors.



Proof. Let f ∈ H. Then

‖Tf‖22 =
∫ 1

0

|tf(t)|2 dt ≤
∫ 1

0

|f(t)|2 dt = ‖f‖22,

so T is bounded. If g ∈ H as well, then

(Tf, g) =
∫ 1

0

tf(t)g(t) dt =
∫ 1

0

f(t)tg(t) dt = (f, Tg),

so T = T ∗. (Remark: in fact, any self-adjoint operator is automatically bounded as well. This is a
minor corollary of the closed-graph theorem). Suppose that Tf = λf for some λ ∈ R and f ∈ H. Then
(λ − t)f(t) = 0 almost everywhere; that is, f = 0 a.e. and hence f = 0 in the (quotient space) L2[0, 1].
Therefore T has no eigenvectors. If T were compact it would have an eigenvector, so we conclude that T is
not compact.

Problem. Let (φk)∞k=1 be an orthonormal basis for a Hilbert space H. Define T : H → H by T (φk) =
(1/k)φk+1. Show that T is comapct and has no eigenvectors.

Proof. Let S : H → H be the shift operator: S : φk 7→ φk+1. If we define A : φk 7→ (1/k)φk as well, then
A,S ∈ L(H) and T = SA. Notice that A is a diagonal operator with ‘diagonal entries’ (that is, eigenvalues)
λk = 1/k. Since λk → 0, we conclude that A is compact (as remarked in the text). Since the compact
operators form an ideal (a theorem in text), we find that T = SA is also compact.

Suppose that Tf = λf for some λ ∈ C and f ∈ H. We can write f =
∑
akφk for some complex scalars

(ak). Then we find that

0 = (λ− T )
∞∑

k=1

akφk = λa1φ1 + (λa2 − a1)φ2 +
(
λa3 −

a2

2

)
φ3 + · · · .

Each coefficient in this basis expansion must vanish. If λ = 0, then 0 = a1 = a2 = · · · . In this case, f = 0
and hence not an eigenvector. Suppose instead that λ 6= 0. Then 0 = a1 = a2 = a3 = · · · follows again.
Either way, f = 0. We conclude that f has no eigenvectors.


